Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The oxygen diffusion rate in hafnia (HfO2)-based resistive memory plays a pivotal role in enabling nonvolatile data retention. However, the information retention times obtained in HfO2 resistive memory devices are many times higher than the expected values obtained from oxygen diffusion measurements in HfO2 materials. In this study, we resolve this discrepancy by conducting oxygen isotope tracer diffusion measurements in amorphous hafnia (a-HfO2) thin films. Our results show that the oxygen tracer diffusion in amorphous HfO2 films is orders of magnitude lower than that of previous measurements on monoclinic hafnia (m-HfO2) pellets. Moreover, oxygen tracer diffusion is much lower in denser a-HfO2 films deposited by atomic layer deposition (ALD) than in less dense a-HfO2 films deposited by sputtering. The ALD films yield similar oxygen diffusion times as experimentally measured device retention times, reconciling this discrepancy between oxygen diffusion and retention time measurements. More broadly, our work shows how processing conditions can be used to control oxygen transport characteristics in amorphous materials without long-range crystal order.more » « less
-
Cranford, Steve (Ed.)Electronic switches based on the migration of high-density point defects, or memristors, are poised to revolutionize post-digital electronics. Despite significant research, key mechanisms for filament formation and oxygen transport remain unresolved, hindering our ability to predict and design device properties. For example, experiments have achieved 10 orders of magnitude longer retention times than predicted by current models. Here, using electrical measurements, scanning probe microscopy, and first-principles calculations on tantalum oxide memristors, we reveal that the formation and stability of conductive filaments crucially depend on the thermodynamic stability of the amorphous oxygen-rich and oxygen-poor compounds, which undergo composition phase separation. Including the previously neglected effects of this amorphous phase separation reconciles unexplained discrepancies in retention and enables predictive design of key performance indicators such as retention stability. This result emphasizes non-ideal thermodynamic interactions as key design criteria in post-digital devices with defect densities substantially exceeding those of today’s covalent semiconductors.more » « less
-
The unique physical properties of two-dimensional (2D) metal halide perovskites (MHPs) such as nonlinear optics, anisotropic charge transport, and ferroelectricity have made these materials promising candidates for multifunctional applications. Recently, fluorine derivatives such as 4,4-difluoropiperidinium lead iodide perovskite or (4,4-DFPD, C 5 H 10 F 2 N) 2 PbI 4 have shown strong ferroelectricity as compared to other 2D MHPs. Although it was previously addressed that the ferroelectricity in MHPs can be affected by illumination, the underlying physical mechanisms of light–ferroelectricity interaction in 2D MHPs are still lacking. Here, we explore the electromechanical responses in 4,4-(DFPD) 2 PbI 4 thin films using advanced scanning probe microscopy techniques revealing ferroelectric domain structures. Hysteretic ferroelectric loops measured by contact-Kelvin probe force microscopy are dependent on domain structures under dark conditions, while ferroelectricity weakens under illumination. The X-ray diffraction patterns exhibit significant changes in preferential orientation of individual lattice planes under illumination. Particularly, the reduced intensity of the (1 1 1) lattice plane under illumination leads to transitioning from a ferroelectric to a paraelectric phase. The instability of positive ions, especially molecular organic cations, is observed under illumination by time-of-flight secondary ion mass spectrometry. The combination of crystallographic orientation and chemical changes under illumination clearly contributes to the origin of light–ferroelectricity interaction in 2D (4,4-DFPD, C 5 H 10 F 2 N) 2 PbI 4 .more » « less
An official website of the United States government
